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ABSTRACT

The independent components of natural images are a set of linear filters which are optimized for statistical inde-
pendence. With such a set of filters images can be represented without loss of information. Intriguingly, the filter
shapes are localized, oriented, and bandpass, resembling important properties of V1 simple cell receptive fields.
Here we address the question of whether the independent components of natural images are also perceptually less
dependent than other image components. We compared the pixel basis, the ICA basis and the discrete cosine
basis by asking subjects to interactively predict missing pixels (for the pixel basis) or to predict the coefficients
of ICA and DCT basis functions in patches of natural images. Like Kersten (1987)1 we find the pixel basis to
be perceptually highly redundant but perhaps surprisingly, the ICA basis showed significantly higher perceptual
dependencies than the DCT basis. This shows a dissociation between statistical and perceptual dependence
measures.

Keywords: redundancy reduction, independent component analysis, information theory, natural image statis-
tics, psychophysics

1. INTRODUCTION

Visual perception starts with two-dimensional (2-D) arrays of light falling on retinae—at least for mammals.
The task of visual perception is to enable the animal to use the information provided in the array of light in
order to react appropriately to the (3-D) objects surrounding it. Clearly, this is a problem of inference, as
already pointed out by Helmholtz in the middle of the 19th century. The problem of understanding vision—
that is, to understand how animals and humans not only solve this “inference” but usually do so accurately,
quickly and seemingly effortlessly—is a formidable task and has attracted generations of thinkers from philosophy,
mathematics, physics, biology, psychology, and, more recently, computer science. For spatial vision and object
perception, understanding the “inference” should allow us to answer Koffka’s2 deceptively simply sounding central
question “Why do things look as they do?” (Koffka, 1935, p. 76).

1.1. Early Vision and Linear Systems Theory

The starting point of visual perception, and the starting point to understand the inference process, is the initial
encoding of light on the retina and the translation of the retinal image into neural representations of the visual
world. This field of research is often referred to as early vision or low-level vision. Mimicking the experimental
approach so very successful in physics, the study of visual processes has traditionally been directed at isolated
physical dimensions of visual information such as luminance, colour, or motion. In this paper we are only
concerned with the initial encoding of luminance, that is, we are concerned with early spatial vision. Many
classic, important, and frequently exceptionally ingenious and elegant experiments have been carried out in this
domain.3–9

Campbell and Robson’s (1968)7 seminal paper argued that—at least some—visual stimuli may be best rep-
resented in the Fourier domain in order to be able to predict their detectability or discriminability for human
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observers. This perhaps counter-intuitive claim implies that the representational format for visual stimuli may
not always resemble phenomenology. Furthermore, their results suggested that the early visual system’s essen-
tial properties could be captured in a linear system—the now ubiquitous linear, band-limited “spatial-frequency
channels.” Ever since Campbell and Robson’s paper a multitude of psychophysical experiments explored the
response of the visual system to simple stimuli with carefully chosen properties in the Fourier domain hoping
to find the (linear) transfer function equivalent of the early visual system. However beautiful some of the ex-
periments and their results may be, they almost rather obscured the central question: What is vision for? Can
we find general basic principles of the initial inference process? Can most of the research on the early stages
of information processing in the brain be subsumed under a more general heading, so as to help us connect the
seemingly isolated pieces of knowledge into a coherent picture?

As Campbell and Robson argued, in spatial vision it is often fruitful to consider the stimuli in the Fourier
domain as the visual system appears to initially code the world via bandpass filters. Motion detection, on the
other hand, is likely accomplished by local delay-and-compare operators, the disparity between images falling on
the retinae can be used to recover depth information, and colour is coded in colour-opponent channels. All of
these operations can be concisely and elegantly subsumed under a common heading: taking measurements via
blurred derivates (see the exemplary exposition by Adelson and Bergen10). The first and most basic task of vision
is to measure—estimate—what is out in the world. Mathematically, function estimation is well accomplished
by taking local derivatives; however, whilst in mathematics the derivative is taken at a point only, for real-
world applications with noise—and if the functions to be estimated are smoothly varying—we gain more robust
information if we take a local average (blur) and then the derivative. Since both blurring and taking the
derivative are linear operators, we can fuse both operations into a single blurred derivative operator. Blurred
derivative operators resemble simple cell receptive fields reasonably well. Of course, different formalisations of
simple cell receptive fields as Gabor functions, differences of Gaussians (DoG’s), or derivatives of Gaussians, and
many others exist. However, all of them can be viewed as blurred derivative operators as long as they contain
inhibitory and excitatory subregions.

1.2. Early Vision and Natural Image Statistics

How complex or simple a structure is depends critically upon the way we describe it. Most of the
complex structures found in the world are enormously redundant, and we can use this redundancy
to simplify their description. But to use it, to achieve the simplification, we must find the right
representation. Herbert A. Simon11,12

In the last section we argued that it is beneficial to view the first task of any sensory system to measure what
is in the world via (blurred) derivatives, that is, we took a functional stance to look at early vision. However,
one may also adopt a normative stance: how a sensory system ought to be organized from an engineering or
information-theoretic point of view.

The relationship between the raw measurements of light intensities in the retina and the behaviorally relevant
variables to be extracted is very subtle. In particular, the response of any photoreceptor viewed in isolation from
the others cannot tell anything about the spatial structure of a scene or the presence or absence of objects. Scenes
and objects—the content of an image—can only indicate themselves through characteristic patterns hidden in
the high-dimensional signal provided by the multitude of receptor responses.

Attneave13 and Barlow14 were among the first to hypothesize that there should be a connection between the
statistical regularities of the visual world and our visual system: Our visual system—the neural representations—
should be adapted to the statistics of “natural images.” With sufficiently powerful desktop computers now readily
available, the study of the general statistics of natural images has become a topic of growing interest. Typically,
researchers attempt to relate the statistical properties of natural scenes to the processing of the early stages of
the visual system1,15–21—for a review see Simoncelli and Olshausen.22 The hypothesized connection between the
statistics of natural images and the properties of sensory neurons in the visual system comes from information
theory: efficient coding and redundancy reduction.

Natural images are highly redundant, that is, they exhibit large correlations between neighbouring pixels
because the world consists of (partially occluded) objects, and nearby regions of the same object or surface are
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Figure 1. The DCT basis functions (left) and the ICA basis functions (right) used in the psychophysical experiment.
The ICA basis has been optimized for the van Hateren images23 (see Fig. 2).

very likely to share the same luminance (and colour). Coding natural images point-by-point, or pixel-by-pixel,
is thus a very inefficient representational format. At the level of the photoreceptors this is, however, precisely
how the visual system represents its input. The redundancy reduction hypothesis suggests that the fundamental
computations of the early stages of the visual system are influenced by the goal of statistical independence.

1.3. Second-Order vs Higher-Order Redundancies

Second-order correlations between pixel intensities are defined by the expectation E[I(x, y)I(x′, y′))]. Using
principal component analysis (PCA), it is always possible to find an orthogonal linear transformation whose
output coefficients are completely decorrelated. At least for local image patches, it is plausible to assume a
translation invariant statistics for the pixel intensities, meaning that E[I(x, y)I(x′, y′))] = C(x − x′, y − y′).
In this case, the principal components are not unique but always resemble products of one-dimensional sine
functions in the x and y direction. Well known examples include the Fourier basis and the basis of the Discrete
Cosine Transform (DCT), which both play a fundamental role in image processing. For redundancy reduction,
the Discrete Cosine Transform is of particular interest as it has proven useful for image compression in the widely
used JPEG standard (see Fig. 1 left).

The assumption of second-order decorrelation alone is not strong enough for deciding which representation
to use for images. In addition to the modest ambiguity in choosing the principal components mentioned in the
previous paragraph, this ambiguity becomes excessive when the restriction of PCA to orthogonal transforms is
dropped.24,25 Therefore, it is a natural extension from the perspective of the redundancy reduction hypothesis
to optimize the representation for higher-order correlations as well.

In an influential paper, Olshausen and Field (1996)20 were able to demonstrate the use of higher-order
statistics for learning an image basis: By training a neural network to sparsely code natural image patches
they found that the resulting basis functions were localized, oriented, and bandpass—features also shared by V1
simple cell receptive fields. Later, several researchers applied variants of independent component analysis (ICA)
to natural images.26–29 Applied to natural images ICA, too, results in basis functions very much like those of
V1 simple cells (see Fig. 1 right).

Like DCT, ICA is based on a linear transformation which makes both representations directly comparable:
The only difference between the two transformations lies in the choice of a different basis (for comparison see
Fig. 1, left vs right).

SPIE-IS&T/ Vol. 6492  64920A-3



Figure 2. Natural image patches used. The patches were extracted from images of the van Hateren natural still image
collection.23

Given that we are still bound to the linear model, how important is the optimization for higher-order de-
pendencies? Linearity strongly regularizes the class of possible mappings. Therefore, it is not obvious whether
the reduction of higher-order redundancies can actually make a large difference in a linear model. In fact, it has
been shown by Bethge25 that the gain of the ICA basis over any other decorrelation basis in terms of redundancy
reduction is only of the order of five percent or even smaller.

Regardless of the small information-theoretical improvement of the ICA basis over the DCT basis (or any other
decorrelating representation), this difference may nonetheless be important empirically. Thus, we complement
the theoretical investigations of Bethge25 with a direct experimental approach in order to test the perceptual
significance of different bases.

2. PSYCHOPHYSICAL EXPERIMENT

Direct psychophysical measurements of the redundancies in image representations are rare, with the notable
exception of Kersten’s study1 which shows how perceptually—and not only statistically—redundant the pixel
representation of images is. Kersten’s study utilized Shannon’s guessing game30 to estimate the entropy of
images. Similarly, our study also instantiates a guessing game, yet we take a less ambitious paradigm which does
not aim at estimating the correct amount of entropy. Rather we would like to perform a robust test against the
null hypothesis of perceptual independence, which considerably simplifies the nature of our guessing game: the
better subjects can predict, the less likely is the null hypothesis, the more significant is the redundancy.

2.1. Experimental Setup

The stimuli—24 patches of 32 x 32 pixels were randomly sampled from ten images of the van Hateren natural
still image collection23.

Stimuli were presented against the mean luminance (213 cd/m2) of a carefully linearised Siemens SMM21106LS
gray-scale monitor driven by a Cambridge Research Systems Visage display controller (spatial resolution 1024 x 768
pixels at a refresh rate of 130 Hz non-interlaced); they were presented within a rectangular temporal envelope
for however long an observer wanted (see section 2.2 for details). At the viewing distance of 50 cm the whole
display nominally subtended 43 degrees of visual angle; individual patches in the 2 x 3 array of image patches
subtended 6 degrees (again see section 2.2 for details).

Eight observers with normal or corrected-to-normal vision acted as experimental subjects; two of them
were authors (MB and FAW), the others were näıve to the purpose of the experiment and were paid for their
participation. Each observer played the guessing-game, described below, for 24 patches for pixel-, ICA- and
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Figure 3. Example stimulus for the pixel-guessing-game; the three columns correspond to the maximally different pixel
intensities for the pixel basis; observers always saw patches in their native resolution of 16 x 16 pixels (top row) and
low-pass filtered to remove the blocking artifacts (bottom row). The target pixel is indicated by the red arrow in each
bottom-row panel.

DCT-bases, for a total of (4 + 1 + 1)× 24 = 144 judgements per observer (the pixel adjustment task was carried
out for 4 different patch sizes).

2.2. Psychophysical Method: Nested Interval Adjustment Scheme

The nature of the guessing-game necessitated the development of a new psychophysical method to obtain reliable
data within a reasonable amount of experimental time. In pilot experiments we found, e.g., that the method of
adjustment worked well for the pixel-basis but led to highly variable and painfully slow trials for the ICA- and
DCT-basis.

The data reported here came from a Nested Interval Adjustment Scheme where subjects were always presented
with three different versions of the same image patch. In the following we first explain the Nested Interval
Adjustment Scheme for the pixel guessing-game, as this is the most intuitive. In the original Kersten-style pixel
guessing-game,1 the pixel intensities have been resolved with 4 bit resolution which gives rise to 16 different gray
level-levels. Observers saw an image with one pixel set to a randomly determined gray-level, and the observers
were asked to set the pixel to its “true” value (a discrete variant of the method of adjustment).

In our experimental paradigm it is not necessary to choose a fixed resolution for the gray levels. The
images were always displayed with maximal resolution of 12 bits which corresponds to 4096 different gray levels.
Observers were presented with three versions of an image patch (see Fig. 3): Instead of adjusting the gray-level
of the experimental-pixel they selected the one closest to the “true” gray-level. If we encode for the whole range
of possible gray-level values by rational numbers between 0 (‘black’) and 1 (‘white’), the first three alternatives
in the pixel guessing-game would always be 1/2 − 1/3 = 1/6 (‘dark’), 1/2 (‘mid-gray’), and 1/2 + 1/3 = 5/6
(‘bright’), respectively. Assume they had selected the mid-gray pixel. The next iteration (or level) of this trial
then presented them with pixel values 1/2 − 1/6 = 1/3 (‘light-gray’), 1/2 (‘mid-gray’) or 1/2 + 1/6 = 2/3
(‘dark-gray’) in the three image patches. Again the observer selected the one they felt was closest to the true
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Figure 4. Graphical demonstration of our nested interval adjustment scheme. The two examples (left vs right) show
that, unlike in a simple bisection setting, different trajectories through the stimulus space can lead to the same outcome—
the same perceptual judgement by our subjects. Subjects stopped a trial when any of the three options at a lower
level—smaller differences—of the tree-like structure looked indistinguishable to them.

pixel value. Observers continued to a lower level—smaller and smaller differences—until the three patches looked
indistinguishable to them. (Typically observers required 7.3± 2.1 iterations for the pixel-, 6.7± 1.7 for the ICA-
and 7.1 ± 2.4 for the DCT-basis.)

Figure 4 shows a stylised version of the pixel guessing-game. After choosing one—the mid-gray one in
Figure 4a, the black one in Figure 4b—the observer is presented with three further choices. In Figure 4a the
observer chooses the darkest alternative, in Figure 4b the middle alternative. In the third iteration the observer
in Figure 4a again chooses the darkest alternative, whereas the observer in Figure 4b now chooses the lightest
alternative. Importantly, they both end up at exactly the same estimate of the true pixel intensity despite their
different choices at both prior (“upper”) levels of the Nested Interval Adjustment Scheme. Thus this scheme
allowed observers to recover from sub-optimal first choices, unlike a strict interval bisection scheme.

In principle, the guessing-game for the ICA- and DCT-basis functions worked in exactly the same way, only
that the coefficients of the basis functions could be adjusted: the three options for a given basis function of a
given basis set were 1.0 (maximal), 0.5 (mid-level) and 0.0 (minimal) at the first level, and so on. Figure 5 shows
an actual example from the experiment for the ICA basis. Two aspects of Figures 3 and 5 are noteworthy: first,
we actually presented each patch six and not three times; once at its native resolution of 16 x 16 pixels (top row)
and once low-pass filtered to remove the blocking artifacts (bottom row). Observers were instructed to inspect
whichever version they preferred to arrive at their judgement. The arrows mark the area of the patches where
the change of this particular ICA basis coefficient results in the largest (perceptual) change in the image patch.

An important difference between the guessing-game with pixels and the guessing-game with the ICA or DCT
basis is the shape of the basis functions: For the pixel basis, the different basis functions differ only by the
locations of the pixel but not by their spatial shape. In contrast, for both, the ICA as well as the DCT basis,
the different basis functions exhibit important differences in the shape. Since it is not feasible to test every
basis function for a given image patch, it raises the question which basis function should be made experimental?
We decided to always choose the basis function whose coefficient is largest in amplitude. This seems to be
a well-suited choice for two reasons: First, a large coefficient indicates that the basis function contributes to
the perceived structure in a meaningful way. Thus, it is more likely that the selected image component is not
perceptually discarded as noise. Secondly, the selection bias towards large amplitude coefficients gives rise to a
bimodal a priori distribution of the coefficients with vanishing density at and around zero. The advantage of
such a distribution is that it penalizes conservative guessing strategies because here a guessing bias towards zero
does not pay off.

For the pixel basis, the guessing-game was carried out for four different patch sizes: first only a small part
(4 × 4 pixels) at the center of the patch was presented. Subsequently the aperture was increased to 8 × 8,
16 × 16, and finally to full patch size of 32 × 32 pixels. Thus the amount of context information that could be
used by the observer for the pixel prediction task was successively increased.

For the ICA and DCT basis, the image patches were presented only at the size of 16 × 16 pixels. On average,
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Figure 5. Example stimulus with the same image patch as in Fig. 3, however, now the three columns correspond to
three different coefficients of an ICA basis function. The lower panel shows the ICA basis function multiplied by the three
different coefficients as used in the image patches above.

observers required 7.3± 2.1 seconds for a pixel-basis judgement; the times were 30.4± 24.1 seconds for the ICA-
and 23.9 ± 14.8 seconds for the DCT-basis.

3. RESULTS

The presentation of the results is divided into two classes: the pixel prediction task with four different patch
sizes and the ICA/DCT coefficient estimation task for a fixed patch size. For each condition, we show the raw
data by plotting the coefficients estimated by the subjects over the ground truth. In addition, we compute the
correlation coefficients and the p-values for the null hypothesis that the data are uncorrelated. Finally, we also
analyze the correlation between the signs of the estimated and the true coefficient.

3.1. Guessing-game with Pixels

Only four of the eight subjects participated in the guessing game with pixels (BH, FW, AF, MB). The raw
data are shown in Fig. 6. The correlation coefficients shown in Fig. 8 (left panel) indicate that our observers
were very good indeed at predicting the pixel values (r2 ≥ 0.8 for all observers and conditions). In fact the p-
values—that observers were simply guessing—are extremely small (p4×4 = 8.3·10−59, p8×8 = 3.7·10−81, p16×16 =
1.6 · 10−75, p32×32 = 4.5 · 10−72 computed over all four subjects). Remarkably, the average correlation between
guess and ground truth increases only between the patch sizes 4× 4 and 8× 8 (although the pixel size has been
kept constant). This shows that the observers make use of very local information only.
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Figure 6. Results for the guessing-game with pixels. Each plot shows the subject’s guess (y-axis) as a function of the true
pixel value (x-axis) using linear coordinates. The four different plots from left to right correspond to the four different
patch sizes used (from left to right: 4 × 4, 8 × 8, 16 × 16, and 32 × 32 pixels). The shaded quadrants indicate for which
data points the sign has been predicted correctly.

3.2. Guessing-game with ICA and DCT

The central result of this paper is the finding of highly significant correlations between the coefficients of the
ICA basis. While the estimate of the magnitude is very noisy in both cases (Figure 7, top row), subjects
are significantly better in predicting the signs of the coefficients in the case of ICA compared to the case
of DCT (Figure 7, bottom row): First, we found that the probability of ‘passes’ (i.e. the subjects set the
coefficient to zero) is twice as large in the case of DCT (PDCT (‘pass’)=13 ± 2%) than in the case of ICA
(PICA(‘pass’)=6 ± 2%). Furthermore, given a nonzero coefficient has been selected, the probability of guessing
its sign correctly was significantly larger in the case of ICA (PICA(‘correct’|‘no pass’)=78±3%) compared to the
case of DCT (PDCT (‘correct’|‘no pass’)=64 ± 4%).

The prediction performance of the signs can be used to compute an information-theoretical lower bound
on the redundancy by computing the information rate between subject guess and ground truth per coefficient.
This information rate can only underestimate the true redundancy between the pixel intensities because the
perceptual “take-up” of the pixel intensity information is limited. For the DCT basis, we find a perceptual
redundancy of 0.048± 0.018 bits/coefficient, while in the case of the ICA basis we obtain a six times larger rate
of 0.234 ± 0.039 bits/coefficient (see Figure 7, bottom row). Since the maximally possible information rate for
the sign information is 1 bit/coefficient, we have a redundancy of at least 23% for the ICA basis.

The differences in the performance in predicting the signs of the basis function coefficients are also clearly
visible from the correlation coefficients (Fig. 8, right panel). In particular the p-values exhibit a striking difference:
The probability of observing the data under the null hypothesis of zero correlation between the experimental
coefficients and the rest is pDCT = 0.2 for the DCT basis. Hence, there are no statistically significant correlations
in this case. In contrast, the p-value for the ICA basis is as small as pICA = 1.2 · 10−11, which strongly suggests
the presence of statistically significant correlations according to standard hypothesis testing procedure.

4. DISCUSSION AND CONCLUSIONS

Our central finding is that the ICA basis exhibits significant, perceptually measurable redundancies while this
is not the case for the DCT basis. This finding may be surprising because by definition the ICA coefficients are
the least redundant coefficients possible that can be achieved using a linear transform. In order to understand
this result we have to understand both: first, the limitations of ICA with respect to redundancy reduction due
to the constraint of linearity as well as, second, the difference between redundancies among pixel intensities in
an image and perceptual redundancies due to the loss of information during the process of perception.

Note that the difference between ICA and second-order decorrelation lies only in the objective function: While
PCA minimizes the log-variances of the different components, ICA seeks to minimize the (marginal) entropies of
the coefficients. Both objective functions are equivalent in case of Gaussian distributions while in the case of ICA
also the deviation from a Gaussian in the shape of the coefficient histograms matters. Although the objective
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Figure 7. Results for the guessing-game with the DCT basis (left) and the ICA basis (right). Upper panel: Both plots
show the subject’s guess (y-axis) as a function of the true pixel value (x-axis) using linear coordinates. The shaded
quadrants indicate for which data points the sign has been predicted correctly. Lower panel: Bar charts indicate the
fraction of trials for which the sign of the coefficient has been predicted correctly. If the estimated coefficient is zero, it
has been classified as ‘pass’. Data for individual observers shown as narrow coloured bars, mean across observers as wide,
transparent bars with black contours.
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Figure 8. (Left) Bar charts show the correlation coefficients for different patch sizes of the pixel guessing-game. (Right)
Shows the correlation coefficient between true and observer-set DCT- and ICA-basis coefficients, respectively. Data for
individual observers shown as narrow coloured bars, mean across observers as wide, transparent bars with black contours.

function of ICA is more precisely to the point of the redundancy reduction hypothesis, it must not be forgotten
that the search space of the optimization in ICA is still limited to linear transformations. Therefore only those
redundancies can be removed which are linearly predictable.

In fact, it is known that the coefficients of the ICA basis for natural images are not truly independent31,32.
Moreover, it has been shown recently that the additional gain obtained by the optimization for higher-order
redundancies in comparison with decorrelation methods is only 5% or smaller25. The result of the present work
goes beyond those theoretical considerations as it confirms empirically that the residual redundancies in the ICA
coefficients are in fact of perceptual relevance.

This also suggests how to answer the other question: How is it possible that the DCT basis exhibited no
significant correlations while the ICA basis did? The answer must be that the statistical dependencies between
the DCT coefficients are perceptually irrelevant as they get attenuated during the process of perception.

In conclusion, our empirical findings suggest that the statistical redundancies between the ICA coefficients
are perceptually more important than those of the DCT basis. Thus, perceptual dependence cannot merely be
seen as a monotonic function of statistical dependence—there are many open questions both theoretical and
psychophysical9,33–36 before we can claim to have understood early vision.
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